

NYAN ZAW HTET

8th EMship cycle: October 2017 – February 2019

Master Thesis

Influence of the Statistical Properties of Parameters of Steel Products on the Ultimate Strength of Ship Hull

Supervisor: Professor Zbigniew Sekulski, West Pomeranian University of Technology, Szczecin, Poland Internship tutor: Mr. Tomasz Msciwujewski, Head of Section/Principal/Engineer/Surveyor, Technical Advisory, DNV-GL, Gdynia Reviewer: Professor Jean-David Caprace, Federal University of Rio de Janeiro, Brazil

Szczecin, January 2019

1. Introduction

- The design strength of a ship structural component is based on **nominal values** for strength parameters such as yield strength, plate thickness, modulus of elasticity etc.
- However, the **actual values** of these parameters are often different from the **nominal values**.
- These actual values tend to behave in random manner, causing **random behavior** of the actual strength.
- Therefore, strength prediction of a structural component needs to consider the random behavior of the properties of steel components.
- The random behavior of the properties of steel components can be assessed by *Statistical Analysis*.

2. Data Collection

- The actual values of yield strength, ultimate strength and impact energy of plates and profiles are collected from mill/material certificates which are usually provided by steel manufacturers.
- These mill/material certificates are submitted to Classification Societies such as DNV-GL for verification and approval.
- The data used in this thesis are collected from DNV-GL data base.
- A total of 2117 test data for plates with thickness 5 to 90mm and 565 test data for profiles(angle bar, flat bar, bulb plate) of various size are collected for analysis.

Influence of the Statistical Properties of Parameters of Steel Products on the Ultimate Strength of Ship Hull

Description	IACS Grade	Number of test data	Total	
	А	1269		
	В	8		
	D	35	2117	
Plates	E	2		
	A36	632		
	D36	90		
	E36	81		
Angle bar	А	37		
Flat hav	А	86	565	
r lat Dar	A36	19		
Pulh plata	А	393		
Duib plate	A36	30		

Plates

NYAN ZAW HTET, 8th EMship cycle: 2017 – 2019

3. Statistical Analysis

• Yield Strength of Normal Strength Steel Plates

Number of samples	Standard deviation	Mean (MPa)	Nominal value (MPa)	Mean/Nominal ratio	Average ratio bias	Distribution
1314	31.213	315.803	235	1.344	34.38%	Normal

NYAN ZAW HTET, 8th EMship cycle: 2017 - 2019

• Yield Strength of Higher Strength Steel Plates

Number of samples	Standard deviation	Mean (MPa)	Nominal value (MPa)	Mean/Nominal ratio	Average ratio bias	Distribution
803	33.389	423.217	355	1.192	19.22%	Log normal

Yield Strength of Normal Strength Steel Profiles

Profiles	Grade IACS	No of samples	Standard deviation	Mean (MPa)	Nominal value (MPa)	Mean/Nominal ratio	Average ratio bias	Distribution
Angle bar	А	37	31.61	324.97		1.38	38.29%	Weibull
Flat bar	А	86	20.61	309.70	225	1.32	31.79%	Log-normal
Bulb plate	А	393	28.91	330.96	235	1.41	40.83%	Log-normal

• Yield Strength of Higher Strength Steel Profiles

Profiles	Grade IACS	No of samples	Standard deviation	Mean (MPa)	Nominal value (MPa)	Mean/Nominal ratio	Average ratio bias	Distribution
Flat bar	A36	20	17.74	412.84		1.163	16.29%	
Bulb plate	A36	30	28.96	419.8	355	1.183	18.25%	Log-normal or normal

Bulb plate

4. Prediction of Ultimate bending strength of ship hull

- Prediction of ultimate bending strength of hull was performed by *HullUlt* computer code written in FORTRAN language by Taczala.
- *HullUlt* is a simplified algorithm to predict ultimate bending strength which is developed based on the modified Smith's method by Taczala.
- A hull model of very large crude carrier *ENERGY CONCENTRATION* was used for calculation of ultimate strength.
- During discharging at Mobil Terminal Rotterdam on 21st of July 1980, *ENERGY CONCENTRATION* 'broke its back" due to a hogging bending moment arising from the load distribution along the length of the ship.

NYAN ZAW HTET, 8th EMship cycle: 2017 - 2019

Prediction of ultimate bending strength of hull was done in two ways.

NYAN ZAW HTET, 8th EMship cycle: 2017 - 2019

Ultimate hogging bending moment								
Approximate method								
With nominal value of yield strength of plates and profiles	With nominal valueof yield strength of plates and profilesWith random value of yield strength of plates and profiles							
Hogging moment (MNm)	Total number of trials	Average hogging moment (MNm)	difference % (compared to approximate method with nominal value)					
21321	50	50 24745.10 16%						

- Average value of ultimate hogging bending moment using random values for yield strength of plate and profile was found to be 16% higher than the ultimate hogging bending moment using nominal values.
- This finding suggests that the random behavior of strength parameter of steel plates and profiles has a significant influence on ultimate hull bending strength of the ship.

NYAN ZAW HTET, 8th EMship cycle: 2017 - 2019

5. CONCLUSION

- 1. The actual value of yield strength of normal strength steel (mild steel) could be approximately 34% higher than the nominal value.
- 2. The actual value of yield strength of higher strength steel (high tensile steel) could be approximately 19% higher than the nominal value.
- 3. As the **plate thickness increase**, the yield strength of normal strength steel and higher strength steel **decreases**.
- 4. The actual value of ultimate hull bending strength of the ship could be 16% higher than the value we predicted when nominal values of strength parameters are used.
- 5. The influence of random behavior of strength parameters cannot be overemphasized.